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Abstract

We determine the asymptotic values on the linear probabilistic(N, �)-widths and linearp-average
N-widths of the space of multivariate functions with bounded mixed derivativeMWr2(T

d), r =
(r1, . . . , rd ), 1/2<r1=· · ·= r�<r�+1� · · · �rd , equipped with a Gaussian measure� in Lq(Td).
That is, the following asymptotic equivalences hold:

(1) If 1<q�2, then

�N,�
(
MWr2(T

d), �, Lq(Td)
)
� (N−1 ln�−1N)r1+(�−1)/2

(
ln(�−1)/2N

)
×
√
1+ (1/N) ln(1/�).

(2) If 1<q <∞, then

�(a)
N

(
MWr2(T

d), �, Lq(Td)
)
� (N−1 ln�−1N)r1+(�−1/2)

(
ln(�−1)/2N

)
.

Here 0< ��1/2, and�> 1depends only on the eigenvalues of the correlation operator of themeasure
� (see (4)).
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If the dimensiond�2, then the asymptotic exact order of probabilistic linear widths ofMWr2(T
d)

with the Gaussian measure� in theLq(Td) space for the casesq = 1, 2<q�∞; and the average

linear widths�(a)
N

(
MWr2(T

d), �, Lq(Td)
)
for the casesq = 1 andq =∞ are still open.
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1. Introduction and main results

LetW be a bounded subset of a normed linear spaceX with norm ‖ · ‖, andFN be a
N-dimensional subspace ofX. IfW is a bounded set ofX, the quantity

e(W,FN,X) := sup
x∈W

e(x, FN,X),

where

e(x, FN,X) := inf
y∈FN

e(x, y,X) := inf
y∈FN

‖x − y‖

is called the deviation ofW from FN . It shows how well the “worst” elements ofW can
be approximated byFN , however, another choice ofXn might provide a smaller deviation.
Thus, we shall consider the possibility of allowing theN-dimensional subspaces to very
within X. This idea, introduced by Kolmogorov[10], is now referred to as theN-width, in
the sense of Kolmogorov, or as theN-width ofW in X, which is given by

dN(W,X) = inf
FN
e(W,FN,X) = inf

FN
sup
x∈W

inf
y∈FN

‖x − y‖, (1)

whereFN runs through all possible linear subspaces ofX of dimension at mostN.
LetT be a linear operator fromX toX, and denote by

�(W, T ,X) = sup
x∈W

‖x − T x‖

as the linear distance of imageTW from the setW. The linearN-width of the setW in X is
defined by

�N(W,X) = inf
TN

�(W, TN,X),

whereTN runs over all linear operator fromX toXwith rank at mostN.
Assume thatWcontains a Borel fieldB consisting of open subsets ofWand is equipped

with a probability measure� defined onB. That is,� is a�-additive nonnegative function on
B, and�(W) = 1. Let� ∈ [0, 1) be an arbitrary number. The corresponding probabilistic
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Kolmogorov(N, �)-width and probabilistic linear(N, �)-width of a setWwith a measure
� in the spaceX are, respectively, defined, by

dN,�(W,�, X) = inf
G�

dN(W\G�, X),

�N,�(W,�, X) = inf
G�

�N(W\G�, X),
(2)

whereG� runs through all possible subsets inB with measure�(G�)��. Thep-average
KolmogorovN-width andp-average linearN-width are defined by

d
(a)
N (W,�, X)p = inf

FN

(∫
W

e(x, FN)
p d�(x)

)1/p

, 0< p <∞,

�(a)n (W,�, X)p = inf
Tn

(∫
W

‖x − Tnx‖pX d�(x)
)1/p

, 0< p <∞. (3)

The classicalN-width of the class of functions characterizes the optimal error of the
hardest elements in the worst case setting. In the probabilistic approach, the error is defined
by the worst case performance on a subset of measure at least 1− �, so the probabilistic
width can be understood as the�-distribution of the approximation on all subsets ofWwhich
reflects the intrinsic structure of the class. Therefore, probabilistic case setting, compared
with the worst case setting, allows one to give deeper analysis of the smoothness and
approximation for the function class.
We see in the average case approach that the error is defined by the integral with respect

to a given probability measure�. Here the approximation emphasizes not the elements
which attain the supremum and may be very small in measure, but the elements on which
the given measure is most concentrated. So the average width characterizes the optimal
approximation of the “most” elements of classes byN-dimensional subspaces.
Detailed information about the usual widths, such as the Kolmogorov widths, Gel’fand

widths and linear widths, may be found in the books [22,26]. Quantities similar to (3)
were considered in[27]. The study of probabilistic and average widths has been suggested
only recently (see e.g.,[18,19,27,28]) and relatively few results have been obtained. More-
over, the majority of the results obtained so far are for univariate classes of functions
(d = 1) (see, e.g.,[3,4,7,14–17,23]). These include results on probabilistic and average
Kolmogorov and linear widths of one dimensional Sobolev classes of functions in theLq -
norm, 1�q�∞. Papageorgiou and Wasilkowski[20], Woźniakowski[29], Paskov[21],
Hickernell and Woźniakowski[8], Kühn and Linde[11] have investigated the problems of
integration and approximation of functions that depend ondvariables. In themonographs of
Traub et al.[27], Ritter[24], some other different problems, which have closely related with
probabilistic width and average width, such asε-complexity and the minimal error of the
problems of function approximation and integration by usingN standard information, and
the problem of approximation solution of integral and differential equations, were investi-
gated in the worst, average, probabilistic case setting, and randomized setting. Furthermore,
Ritter[24] provided themost recent and very detailed survey of average case setting results.
Denote byLq(T

d), 1�q�∞, the classicalq-integral Lebesgue space of 2�-periodic
functionswith the usual norm‖·‖Ldq := ‖·‖Lq(Td ). Lety = (y1, . . . , yd), t = (t1, . . . , td ) ∈
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Rd , s ∈ R. Then we write|y|s = |y1|s . . . |yd |s , y+ s = (y1+ s, . . . , yd + s), y > s which
means thatyj > s, j = 1, . . . , d, and(y, t) =∑d

j=1 yj tj .
Consider the Hilbert spaceL2(T

d) consisting of all 2�-periodic functionsx defined on
thed-dimensional torusTd := [0, 2�)d (T := T1) with the Fourier series

x(t) =
∑
k∈Zd

ck exp(i(k, t)) =
∑
k∈Zd

ckek(t), ek(t) := exp(i(k, t))

and inner product

〈x, y〉 = 1

(2�)d

∫
Td
x(t)y(t) dt, (x, y ∈ L2(T

d)).

For arbitrary vectorr = (r1, . . . , rd) ∈ Rd , we define therth-order derivative ofx in the
sense of Weyl by

x(r)(t) := (Drx)(t) =
∑
k∈Zd

(ik)rck exp(i(k, t)),

wherek = (k1, . . . , kd) ∈ Zd , and(ik)r =∏dj=1 |kj |rj exp((�i/2)sgnrj ).
We study the multivariate Sobolev space with mixed derivativeMWr

2(T
d), r = (r1, . . . ,

rd) ∈ Rd+, which consists of all functionsx ∈ L2(T
d) satisfying the additional condition∫ 2�

0
x(t) dtj = 0, j = 1, . . . , d,

which means thatck = 0, if k = (k1, . . . , kd), andk1k2 . . . kd = 0. The spaceMWr
2(T

d)

is a Hilbert space with the inner product

〈x, y〉r := 〈x(r), y(r)〉
and the norm‖x‖2

MWr2 (T
d )
= 〈x(r), x(r)〉. It is well known that ifr > max{0, 1/2− 1/q},

then the spaceMWr
2(T

d) can be embedded continuously into theLq(T
d), 1�q�∞.

We equipMWr
2(T

d) with a Gaussian measure� whose mean is zero and whose corre-
lation operatorC� has eigenfunctions ek = exp(i(k, ·)) and eigenvalues

�k = |k|−�, � > 1, (4)

that is

C�ek = �kek, ∀k ∈ Zd0,

where

Zd0 =
{
k = (k1, . . . , kd) ∈ Zd : ki �= 0, i = 1, . . . , d

}
.

Let y1, . . . , yn be any orthogonal system of functions inL2(T
d), �j = 〈C�yj , yj 〉,

j = 1, . . . , n, andB be an arbitrary Borel subset ofRn. Then the Gaussian measure� on
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the cylindrical subsets in the spaceMWr
2(T

d)

G =
{
x ∈ MWr

2(T
d) : (〈x, y(−r)1 〉r , . . . , 〈x, y(−r)n 〉r ) ∈ B

}
is given by

�(G) =
n∏
j=1
(2��j )−1/2

∫
B

exp

− n∑
j=1

|uj |2
2�j

 du1 · · · dun.
More detailed information about the Gaussian measure in Banach space is contained in the
books of Kuo[12], Ledoux and Talagrand[13].
Here and later on we use the following notations: Assume thatc, ci , i = 0, 1, . . . , are

positive constants depending only on the parametersr, q,� andd. For two positive functions
u(y) andv(y), y ∈ B, we writeu(y) � v(y) oru(y)� v(y) if there exist constantsc1 and
c2 or c such thatc1�u(y)/v(y)�c2 or u(y)�cv(y), y ∈ B.
Now we are in position to state our main results.

Theorem 1. Let r = (r1, . . . , rd), 1/2 < r1 = · · · = r� < r�+1� · · · �rd , 1 < q < ∞,
� > 1,and� ∈ (0, 1/2].Then the Probabilistic linear widths ofWr

2(T
d)with the Gaussian

measure� in the spaceLq(T
d) satisfy asymptotics

(a) If 1< q�2, then

�N,�
(
MWr

2(T
d), �, Lq(Td)

)
� (N−1 ln�−1N)r1+(�−1)/2

(
ln(�−1)/2N

) √
1+ (1/N) ln(1/�).

(b) If 2�q <∞, then

(N−1 ln�−1N)r1+(�−1)/2
(
ln(�−1)/q N

) (
1+N−1/q√ln(1/�)

)
� �N,�

(
MWr

2(T
d), �, Lq(Td)

)
� (N−1 ln�−1N)r1+(�−1)/2

(
ln(�−1)/2N

) (
1+N−1/q√ln(1/�)

)
.

Remark 1. The order of upper bound in the part (b) of Theorem 1 is different from the
lower bound only by a power lnN . We conjecture that the order of upper bound is exact.

Following the method of Maiorov[14] and using Theorem 1, we obtain:

Theorem 2. Let r = (r1, . . . , rd), 1/2 < r1 = · · · = r� < r�+1� · · · �rd , 1 < q < ∞,
0 < p < ∞ and� > 1. Then the average linear N-width of the spaceMWr

2(T
d) in the

Lq(T
d) norm has the asymptotic value

�(a)N
(
MWr

2(T
d), �, Lq(Td)

)
� (N−1 ln�−1N)r1+(�−1)/2

(
ln(�−1)/2N

)
.

Remark 2. (a) LetBMWr
2(T

d) be the unit ball of the multivariate Sobolev space with
mixed derivative. The first result on exact order of the classical KolmogorovN-width of
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BMWr
2(T

d) in the spaceLq(T
d), q = 2 was obtained by Babenko[1], and then the other

cases of 1< q < 2, and 2< q < ∞ were investigated by Galeev[5,6], Temlyakov (see,
e.g,[26] for more details). In particular, we have the asymptotic expressions

dN

(
BMWr

2(T
d), Lq(T

d)
)
� (N−1 ln�−1N

)r1
, 1< q <∞,

�N
(
BMWr

2(T
d), Lq(T

d)
)
� (N−1 ln�−1N

)r1−(1/2−1/q)+
, 1< q <∞, (5)

whererj , j = 1, . . . , d, are ordered such that 1/2< r1 = · · · = r� < r�+1� · · · �rd .
(b) It follows from (5), the classical Kolmogorov and linearN-widths are equal modulo

multiplicative constants forBMWr
2(T

d) in the spaceLq(T
d), 1 < q�2; however, for

q > 2 dN
(
MWr

2(T
d), Lq(T

d)
)
is essentially less than the linear width�N

(
MWr

2(T
d),

Lq(T
d)
)
. The linear operators lose to optimal nonlinear operators by a factorN1/2−1/q.

In [2], we have proved that under the condition of Theorem 1, the average Kolmogorov
N-widths ofMWr

2(T
d)with theGaussianmeasure� in the spaceLq(T

d) satisfy asymptotic
relation

d
(a)
N

(
MWr

2(T
d), �, Lq(Td)

)
� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N). (6)

Comparing this with Theorem 2, it is interesting to note that in the average case setting, the
KolmogorovN-width and linearN-width ofMWr

2(T
d) in theLq(T

d) space, 1< q <∞,
have the same error order. This means that for most functions in class ofMWr

2(T
d), the

optimal linear operators are (modulo a constant) as good as nonlinear operators.

Remark 3. (a) In the case of one dimensiond = 1, 1�q�∞, Theorems 1 and 2 were
proved by Maiorov[15], and Fang andYe[3,4].
(b) If the dimensiond�2, then theasymptotic exact order of Probabilistic linearwidths of

Wr
2(T

d)with the Gaussian measure� in theLq(T
d) space for the casesq = 1, 2< q�∞;

and the average linear widths�(a)N
(
MWr

2(T
d), �, Lq(Td)

)
for the caseq = 1 andq = ∞

are still open.

The organization of the paper is as follows. In Section 2, we establish two discretiza-
tion theorems, which will be used to show the upper and lower estimates of Theorem 1,
respectively. In Section 3, we give the proof of Theorems 1 and 2.

2. Discretization

In order to prove Theorem 1, we use the discretization method (see[9,14]), which is
based on the reduction of the calculation of the probabilistic linear widths of a given class
to the computation of widths of finite-dimensional set equipped with the standard Gaussian
measure. First, we recall the definitions and cite some results on the linear(N, �)-widths
of finite-dimensional set, which play an important roles in the proof of Theorem 1. Let%mp
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bem-dimensional normed space of vectorsx = (x1 . . . xm) ∈ Rm, with a norm

‖x‖%mp =


(
m∑
i=1
|xi |p

)1/p

, 1�p <∞,
max

1� i�m
|xi |, p = ∞.

Consider inRm the standard Gaussian measure� = �m, which is defined as

�(G) = (2�)−m/2
∫
G

exp

(
−1

2
‖x‖22

)
dx,

whereG is any Borel subset inRm. Obviously,�(Rm) = 1.
LetN = 0, 1, . . ., and� ∈ [0, 1)be arbitrary.We define linear(N, �)-width of the space

Rm equipped with the standard Gaussian measure� in %mq -norm:

�N,�(R
m, �, %mq ) = inf

G�

inf
TN

sup
x∈Rm\G�

‖x − TNx‖%mq ,

whereTN runs over all linear operator fromX toXwith rank at mostN.
The following two lemmas will be used in the proof of Theorem 1.

Lemma 1 (Maiorov [15]). If 1�q�2,m�2N and� ∈ (0, 1/2], then
�N,�(R

m, �, %mq ) � m1/q +√ln(1/�).

Lemma 2 (Gensun and Peixin[3]). If 1�q�2,m�2N and� ∈ (0, 1/2], then
�N,�(R

m, �, %mq ) � m1/q−1/2√m+ ln(1/�)

and ifm > N , then

�N,�(R
m, �, %mq )� m1/q−1/2√m+ ln(1/�).

We now start to establish the discretization theorem. First, we introduce some notations
and lemmas. It is convenient in many cases to split the Fourier series of a function into the
sum of diadic blocks. We associate every vectors = (s1, . . . , sd) ∈ Nd whose coordinates
are natural numbers with the set

�s = {n = (n1, . . . , nd) ∈ Zd0 : 2sj−1� |nj | < 2sj , j = 1, . . . , d}
and letxs(·) denote the “block” of the Fourier series forx(·), namely

�sx(·) := xs(·) :=
∑
n∈�s

cne
i(n,·).

The next two known lemmas are crucial for establishing discretization theorem (see
Theorems 3 and 4).
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Lemma 3 (Galeev[5]). Let S be a subset ofNd , 	 = (	1, . . . , 	d) ∈ Rd , 1< q <∞ and
x =∑s∈S �sx ∈ Fs . Then we have

|S|(1/2−1/q)−
(∑
s∈S
‖2(s,	)�sx‖qLdq

)1/q

� ‖x(	)‖Ldq � |S|(1/2−1/q)+
(∑
s∈S
‖2(s,	)�sx‖qLdq

)1/q

, (7)

wherea− = min{0, a}, b+ = max{0, b}, |S| denotes the cardinality of the set S,and

FS = span{ei(n,·) : n ∈ �s , s ∈ S}.

Lemma 4 (Galeev[5]). Let s ∈ Nd . Then the space of trigonometric polynomials

span
{
ei(n,·) : n ∈ �s

}
is isomorphic to the spaceR2(s,1) via mapping

x(t) �−→ {xs,m(tj )}m,j , xs,m(t) =
∑
n∈�s

sgnn=sgnm

cne
i(n,t)

m = (m1, . . . , md) = (±1, . . . ,±1)∈ Rd , tj = (�22−s1j1, . . . ,�22−sd jd) ∈ Rd ,

ji = 1, . . . ,2si−1, i = 1, . . . d.

Moreover,the following relation is true:

‖x‖Lqd � 2−(s,1/q)‖{xs,m(tj )}m,j‖%2(s,1)q
, 1< q <∞, (8)

where in the equivalence norm(8), the constants do not depend on s.

Now we are ready to establish a discretization theorem which reduces the computation
of the upper bound for probabilistic linear(N, �)-width �N,�(MWr

2(T
d),�, Lq(Td)) to

the corresponding finite-dimensional problem for the linear(N, �)-width �N(Rm, �, %mq ).
Below, we always assume that


 = r + �/2, 
′ = 
/(r1+ �/2)

and for natural numbersk and%, let

S%,k = {s ∈ Nd : %− 1�(s, 
′) < %, (s, 1)= k}, (9)

i.e.,

S%,k =
{
s ∈ Nd :

d∑
i=1
si = k, %− 1�k
′ < %

}
,
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and let‖S%,k‖ =
∑
s∈S%,k

|�s |. Then we have‖S%,k‖ = 2k|S%,k|. It is clear, we always have

k�d andS%,k = � if k�%. Set

F%,k = span{ei(n,·) : n ∈ �s , s ∈ S%,k}.

Theorem 3. Let 1 < q < ∞, r = (r1, . . . , rd) ∈ Rd , 1/2 < r1 = · · · = r� <

r�+1� · · · �rd , N = 0, 1, . . ., � ∈ (0, 1/2] and let the sequences of numbers{N%,k}
and{�%,k} be such that0�N%,k�‖S%,k‖, ∑%,k N%,k�N , and

∑
%,k �%,k��. Then

�N,�
(
MWr

2(T
d),�, Lq(Td)

)
�
∑
%,k

2−(r1+�/2)%+k/2−k/q |S%,k|(1/2−1/q)+�N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
.

Proof. It follows from Lemma 3 that

|S%,k|(1/2−1/q)−
∑
s∈S%,k

‖�sx‖qLdq

1/q

� ‖x‖Ldq �
∣∣S%,k∣∣(1/2−1/q)+

∑
s∈S%,k

‖�sx‖qLdq

1/q

, (10)

wherex ∈ F%,k. Note that
 = r + �/2 and(s, 1) = k for s ∈ S%,k, then the definition of
�sx implies∑

s∈S%,k
‖�sx(r)‖qLdq

1/q

�
∑
s∈S%,k

‖2(s,r)�sx‖qLdq

1/q

=
∑
s∈S%,k

2q(s,r+�/2)−q(s,�/2)‖�sx‖qLdq

1/q

=
∑
s∈S%,k

2q(s,
)−qk�/2‖�sx‖qLdq

1/q

� 2(r1+�/2)%

∑
s∈S%,k

2−qk�/2‖�s x‖qLdq

1/q

= 2(r1+�/2)%−k�/2
∑
s∈S%,k

‖�s x‖qLdq

1/q

.
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Substituting the above relation in (10), we get

|S%,k|(1/2−1/q)−2−(r1+�/2)%+k�/2
∑
s∈S%,k

‖�sx(r)‖qLdq

1/q

� ‖x‖Ldq � |S%,k|(1/2−1/q)+2−(r1+�)%+k�/2
∑
s∈S%,k

‖�sx(r)‖qLdq

1/q

,

which together with Eq. (8) in Lemma 4 for the�sx(r) implies

|S%,k|(1/2−1/q)−2−(r1+�/2)%+k�/2
∑
s∈S%,k

2−(s,1)‖{(�sx(r))(tj )}m,j‖q
%2
(s,1)
q

1/q

� ‖x‖Ldq � |S%,k|(1/2−1/q)+2−(r1+�/2)%+k�/2

×
∑
s∈S%,k

2−(s,1)‖{(�sx(r))(tj )}m,j‖q
%2
(s,1)
q

1/q

. (11)

Now we consider in the spaceF%,k the polynomials

�%,ks,m,j (t) =
∑
n∈�s

signn=signm

en(t − tj ), s ∈ S%,k,

m = (m1, . . . , md) = (±1, . . . ,±1)∈ Rd , ji = 1, . . . ,2si−1, i = 1, . . . d.

Obviously, these polynomials are orthogonal inL2(T
d), and for anyx ∈ F%,k,

(Drx)s,m(tj ) = 〈Drx,�%,ks,m,j 〉, ∀s, m, j.
Plugging this into (11), and noting that(s, 1)= k for anys ∈ S%,k, we get

|S%,k|(1/2−1/q)−2−(r1+�/2)%+k�/2−k/q‖{〈Drx,�%,ks,m,j 〉}s,m,j‖%‖S%,k‖q

� ‖x‖Ldq � |S%,k|(1/2−1/q)+2−(r1+�/2)%+k�/2−k/q

×‖{〈Drx,�%,ks,m,j 〉}s,m,j‖%‖S%,k‖q

. (12)

Now for any%, k ∈ N andd�k�%, we consider a mapping

I%,k : F%,k → %
‖S%,k‖
q x �→ {〈Drx,�%,ks,m,j 〉}s,m,j .

It follows from (12) and Lemma 4 thatI%,k is linear isomorphic from the spaceF%,k to the

space%
‖S%,k‖
q .

In the sequel for convenience, we write

�N%,k,�%,k := �N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
.
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Denote byL%,k a linear operator fromR‖S%,k‖ to R‖S%,k‖ such that dimL%,k�N%,k and

�
{
y ∈ R‖S%,k‖ : ‖y − L%,ky‖%mq > �N%,k,�%,k

}
��%,k. (13)

For anyx ∈ MWr
2(T

d), let%,kx =
∑
s∈S%,k

�sx. Then by virtue of (12) there exists constant

c1 independent of% andk such that

‖%,kx −D−r I−1%,k L%,kI%,k%,kx‖Ldq
�c1|S%,k|(1/2−1/q)+2−(r1+�/2)%+k�/2−k/q

×
∥∥∥{〈Drx,�%,ks,m,j 〉}s,m,j − L%,k{〈Drx,�%,ks,m,j 〉}s,m,j∥∥∥

%
‖S%,k‖
q

. (14)

Set�%,ks,m,j := 〈C��
%,k
s,m,j ,�

%,k
s,m,j 〉. Then it is clear that all of�%,ks,m,k are equal and

�%,ks,m,j =
∑
n∈Zd0

|n|−�|〈�%,ks,m,j , ei(n,·)〉|2

=
∑
n∈�s ,

signn=signm

|n|−� � (2(s,1))(1−�) = 2−k(�−1).

Therefore there exists a constantc2 such that

� := �%,ks,m,j = c222−k(�−1), ∀s,m, j. (15)

Consider the set ofMWr
2(T

d)

G%,k = {x ∈ MWr
2(T

d) : ‖%,kx −D−r I−1%,k L%,k%,kx‖Ldq
> c1c2|S%,k|(1/2−1/q)+2−(r1+�/2)%+k/2−k/q�N%,k,�%,k }.

From (14), the definitions of the measure� and the standard Gaussian measure� in the
spaceR‖S%,k‖ and (13),

�(G%,k) � �
{
x ∈ MWr

2(T
d) : ‖%,kx −D−r I−1%,k L%,kI%,k%,kx‖Ldq

> �1/2�N%,k,�%,k
}

= �
{
y ∈ R‖S%,k‖ : ‖y�1/2− L%,ky�1/2‖

%
‖S%,k‖
q

> �1/2�N%,k,�%,k

}
= �

{
y ∈ R‖S%,k‖ : ‖y − L%,ky‖

%
‖S%,k‖
q

> �N%,k,�%,k

}
��%,k. (16)

Let us consider the setG = ∪%,kG%,k and the linear operatorTN defined fromMWr
2(T

d)

to MWr
2(T

d), which is TNx =
∑
%,k

D−r I−1%,k L%,kI%,k%,kx. From the hypothesis of the

theorem, we get

�(G)�
∑
%,k

�(G%,k)�
∑
%,k

�%,k��
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and

dim TN�
∑
%,k

dim L%,k�
∑
%,k

N%,k�N.

Consequently, by the definitions ofG, TN , {G%,k} and{L%,k},
�N,�

(
MWr

2(T
d),�, Lq(Td)

)
� sup
x∈MWr2 (Td )\G

‖x − TNx‖Ldq

� sup
x∈MWr2 (Td )\G

∑
%,k

‖%,kx −D−r I−1%,k L%,kI%,k%,kx‖Ldq

�
∑
%,k

2−(r1+�/2)%+k/2−k/q |S%,k|(1/2−1/q)+�N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
,

which complete the proof of Theorem 3.�

To establish the upper bound of Theorem 1, we also need the following lemma.

Lemma 5 (Romanyuk[25]). LetN ∈ N,N � 2uu�−1, � > 0, S%,k be defined by(9) and

N%,k :=

‖S%,k‖, d�k�%, %�u,
�|S%,k|2u+�u−2�%+�k�, d�k�%, % > u,
0 others.

Then ∑
%,k

N%,k � N, (17)

where�a� means the largest integer no greater than a.

We suppose that in Lemma 5 the constant� > 0 satisfies also the condition

0< � < min{2r1+ �− 2, 1/2} (18)

and will be selected in the course of establishing the required upper bound of Theorem 1.
To proceed the lower estimate of Theorem 1, we prove another discretization theorem,

which reduces the computation of the lower bound for probabilistic linear(N, �)-width
to the estimate of the lower bound on finite-dimensional problem for the(N, �)-width
�N(Rm, �, %mq ). Thus in a certain sense, it is a converse of Theorem 3. First we give some
notations.
Let S = Sk0 = {s = (s1, . . . , s�, 1, . . . ,1) ∈ Nd : (s, 1) = k = [k0]}, wherek0 will

be chosen later. It is not difficult to prove that|S| � k�−1, that is, there exist two positive
constantsc3 andc4 such thatc3k�−1� |S|�c4k�−1. We choosek0 such that the number of
harmonics in the set ofS is at least 2N , i.e.,

‖S‖ :=
∑
s∈S
|�s | =

∑
s∈S

2(s,1) = |S|2k�c3k�−12k�c5k�−10 2k0 = 2N
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and

2kk�−1 � N � |S|2k. (19)

We consider the space of trigonometric polynomials

FS = span{ei(n,t) : n ∈ �s , s ∈ S}.
In the proof of (12), if we letS%,k = S, and note that(s, 1) = k for anys ∈ S, it follows
that there exist two positive constantsc6 andc7 such that

c6|S|(1/2−1/q)−2−(r1+1/q)k‖{〈Drx,�k,ks,m,j 〉}s,m,j‖%‖S‖q
�‖x‖Ldq �c7|S|(1/2−1/q)+2−(r1+1/q)k‖{〈Drx,�

k,k
s,m,j 〉}s,m,j‖%‖S‖q . (20)

Let

IS : FS → %‖S‖q , x �→ {〈Drx,�k,ks,m,j 〉}s,m,j .
Then by virtue of Lemma 4 and (20),IS is a linear isomorphic mapping from the space of
trigonometric polynomialsFS to %

‖S‖
q .

Now, we are ready to prove the another discretization theorem.

Theorem 4. Suppose that1 < q < ∞, r = (r1, . . . , rd) ∈ Rd , 1/2 < r1 = · · · = r� <
r�+1� · · · �rd ,N = 0, 1, . . ., � ∈ (0, 1/2]. Then it follows that

�N,�
(
MWr

2(T
d), �, Lq(Td)

)
� 2−(r1+1/q+(�−1)/2)k|S|(1/2−1/q)−

×�N,�
(

R‖S‖, �, %‖S‖q
)
,

where the set S is defined by(19).

Proof. Let T1 be a linear operator fromMWq(T
d) ∩ FS to MW2(T

d) ∩ FS such that
dimT1�N and

�
{
x ∈ MWr

2(T
d) ∩ FS : ‖x − T1x‖Lq > �N,�

}
��, (21)

where�N,� := �N,�(MWr
2(T

d),�, Lq(Td)). Set

G=
{
y ∈ R‖S‖ : ‖y − IST1DrI−1S y‖Ldq
> c−12 c62

(r1+1/q+(�−1)/2)k|S|(1/q−1/2)−�N,�
}
,

wherec2, c6 are defined by (15), (20), respectively. Then from (20) and (21), we get

�(G) � �
{
y ∈ R‖S‖ : ‖y�−1/2− IST1DrI−1S y�−1/2‖%‖S‖q
> c62

(r1+1/q)k|S|(1/q−1/2)−�N,�
}
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= �
{
x ∈ MWr

2(T
d) ∩ FS : ‖{〈Drx,�k,ks,m,j 〉}s,m,j

−IST1DrI−1S {〈Drx,�k,ks,m,j 〉}s,m,j‖%‖S‖q
> c62

(r1+1/q)k|S|(1/q−1/2)−�N,�
}

� �
{
x ∈ MWr

2(T
d) ∩ FS : ‖x − T1x‖Ldq > �N,�

}
��, (22)

where the constant� is defined by (15). Clearly, dim{IST1DrI−1S }�N . Therefore, by (12),

�N,�
(

R‖S‖, �, %‖S‖q
)

� sup
y∈R‖S‖\G

‖y − IST1DrI−1S y‖%‖S‖q
� 2(r1+1/q+(�−1)/2)k|S|(1/q−1/2)−�N,�.

That is

�N,�
(
MWr

2(T
d),�, Lq(Td)

)
� 2−(r1+1/q+(�−1)/2)k|S|(1/2−1/q)−

×�N,�
(

R‖S‖, �, %‖S‖q
)
, (23)

which completes the proof of Theorem 4.�

3. Proofs of main results

We are in a position to prove Theorem 1 which is the main result of this paper.

Proof of Theorem 1.Webegin with the upper bound. It is clear that we only need to prove
the upper estimate for the case 2�q <∞. Choose a constant 0< � < 1/2, and for given
N ∈ N, select au according to the conditionN � 2uu�−1. We defineN%,k as in Lemma 5,
and let

�%,k =
{

�N%,k/N, d�k�%, % > u,
0 others.

From the definition of�%,k and (17), we get∑
%,k

�%,k � �. (24)

By virtue of (17) and (24), we know that{N%,k} and{�%,k} satisfy the conditions in Theorem
3. By Theorem 3 and Lemma 1, we have

�N,�
(
MWr

2(T
d),�, Lq(Td)

)
�
∑
%,k

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q�N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
�
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q�N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
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�
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q
(
‖S%,k‖1/q +

√
ln(N/(N%,k�))

)
�
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q‖S%,k‖1/q

+
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/qN−1/2%,k N1/2

+
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q
√
ln(1/�)

:= I1+ I2+ I3. (25)

In the course of the proof of the second inequality, we have used a simple fact

�N%,k,�%,k
(

R‖S%,k‖, �, %‖S%,k‖q

)
= 0, d�k�u or k < d or k > %.

Our next aim is to estimate the three terms at the end of expression (25). Sincer1 > 1/2,
we can choose a constant� such that the condition 0< � < 1/2 is satisfied. We start with
the termI1,

I1=
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q|S%,k|1/q2k/q

=
∑
%>u

2−(r1+�/2)%
∑

d�k�%
2k/2|S%,k|1/2. (26)

Now we begin to deal with the inner sum in (26). For this purpose, using an idea of[25],
we represent this sum in the form∑

d�k�%
2k/2|S%,k|1/2 =

 ′∑
d�k�%

+
′′∑

d�k�%

 2k/2|S%,k|1/2, (27)

where the summation in
′∑

d�k�%
is carried out overkwith |S%,k|�%�−1, and the summation

in
′′∑

d�k�%
is carried out overk for which |S%,k| > %�−1. We have

′∑
d�k�%

2k/2|S%,k|1/2�%(�−1)/2
′∑

d�k�%
2k/2� %(�−1)/22%/2 (28)

and
′′∑

d�k�%
2k/2|S%,k|1/2 =

′′∑
d�k�%

2k/2|S%,k| |S%,k|−1/2

� %−(�−1)/2
∑

(s,
′)�%
2k/2(s,1)� %−(�−1)/22%/2%�−1

= 2%/2%(�−1)/2. (29)
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Thus, substituting (28) and (29) in (27), we obtain∑
d�k�%

2k/2|S%,k|1/2� 2%/2%(�−1)/2.

Return to (26). It follows that

I1 �
∑
%>u

2−(r1+(�−1)/2)%%(�−1)/2� 2−(r1+(�−1)/2)uu(�−1)/2

� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N). (30)

Next we estimate the termI2. Using the condition 0< � < 1/2, we get

I2 =
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q|S%,k|−1/2

×2−u/2−�u/2+�%−�k/2N1/2

� N1/22−u/2−�u/2
∑
%>u

2−(r1+�/2)%+�%
∑

d�k�%
2(1/2−�/2−1/q)k|S%,k|−1/q

� N1/22−u/2−�u/2
∑
%>u

2−(r1+�/2)%+�%
∑

d�k�%
2(1/2−�/2)k

� N1/22−u/2−�u/2
∑
%>u

2−(r1+�/2−1/2−�/2)%

� N1/22−u/2−�u/22−(r1+�/2−1/2−�/2)u

= N1/22−(r1+(�−1)/2)u2−u/2 � u(�−1)/22u/22−(r1+(�−1)/2)u2−u/2
= 2u/22−(r1+(�−1)/2)uu(�−1)/2 � (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N). (31)

Finally, we proceed the termI3. Using the condition 0< � < 2r1 + � − 2 (see (18)), we
derive

I3 =
∑
%>u

∑
d�k�%

2−(r1+�/2)%+k/2−k/q |S%,k|1/2−1/q
√
ln(1/�)

�
∑
%>u

2−(r1+�/2)%
∑

d�k�%
2(1/2−1/q)k|S%,k|1/2−1/q

√
ln(1/�). (32)

Using the method of computingI1, we get∑
d�k�%

2(1/2−1/q)k|S%,k|1/2−1/q � 2(1/2−1/q)%%1/2−1/q.

Substituting above inequality in (32), we have

I3 �
∑
%>u

2−(r1+(�−1)/2+1/q)%
(
%�−1

)1/2−1/q√
ln(1/�)

� 2−(r1+(�−1)/2)uu(�−1)/2
(
2uu�−1)−1/q√ln(1/�)

� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)N−1/q
√
ln(1/�). (33)
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Substituting (30), (34) and (33) in (25), we have

�N,�
(
Wr

2(T
d), �, Lq(Td)

)
� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)

×
(
1+N−1/q√ln(1/�)

)
, (34)

which completes the upper estimate of Theorem 1.
Now we proceed to estimate the lower bound. We begin to prove the left inequality of

the part (b) of Theorem 1. Let 2�q <∞. It follows from Theorem 4, Lemma 1 and note
that|S| � k�−1, we have

�N,�
(
MWr

2(T
d), �, Lq(Td)

)
� 2−(r1+1/q+(�−1)/2)k�N,�

(
R‖S‖, �, %‖S‖q

)
� 2−(r1+1/q+(�−1)/2)k(‖S‖1/q +√ln(1/�))

� 2−(r1+(�−1)/2+1/q)k|S|1/q2k/q + 2−(r1+(�−1)/2+1/q)k
√
ln(1/�)

� 2−(r1+(�−1)/2)kk(�−1)/q + 2−(r1+(�−1)/2)kk(�−1)/qk−(�−1)/q2−k/q
√
ln(1/�)

� (N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/q N + (N−1 ln�−1N)r1+(�−1)/2

×(ln(�−1)/q N)N−1/q√(ln 1/�)
� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/q N)(1+N−1/q√ln(1/�)).

We turn to establish the lower estimate for the case 1< q�2. In this case, the lower
bound of Theorem 1 can be obtained directly from our paper[2], but for convenience to the
reader, we give the proof in details. By Theorem 4, and Lemma 2, we have

�N,�
(
MWr

2(T
d), �, Lq(Td)

)
� 2−(r1+1/q+(�−1)/2)k|S|1/2−1/q�N,�

(
R‖S‖, �, %‖S‖q

)
� 2−(r1+1/q+(�−1)/2)k|S|1/2−1/q‖S‖1/q−1/2√‖S‖ + ln(1/�)

� 2−(r1+(�−1)/2)k|S|1/2+ 2−(r1+(�−1)/2+1/2)k
√
ln(1/�)

� 2−(r1+(�−1)/2)kk(�−1)/2+ 2−(r1+(�−1)/2)k k(�−1)/2

2k/2k(�−1)/2
√
ln(1/�)

� (N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/2N

+(N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N) 1√
N

√
(ln 1/�)

� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)
√
1+ 1/N ln(1/�),

which is the required lower estimate of part (a) of Theorem 1. The proof of Theorem 1 is
completed. �

Proof of Theorem 2. First, we estimate the upper bounds. In this case, we only need to
consider the case of 2�q < ∞. It follows from the proof of Theorem 1 thatLq(T

d) has
a linear operatorT with dimT �N such that for any� ∈ (0, 1/2] and some subsetG� ⊂
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MWr
2(T

d) with �(G�)��,

�
(
MWr

2(T
d)\G�, T , Lq(T

d)
)
� (N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)

×
(
1+N−1/q√ln(1/�)

)
. (35)

Consider the sequence{G2−k }∞k=0 of sets, whereG1 = MWr
2(T

d) for k = 0.Then it follows
from estimate (35) that∫

MWr2 (T
d )

�
(
x, T , Lq(T

d)
)p

�(dx)

=
∞∑
k=0

∫
G2−k \G2−k−1

�(x, T , Lq(Td))p �(dx)

�
∞∑
k=0

�
(
MWr

2(T
d)\G2−k−1, T , Lq(T

d)
)p

�(G2−k )

�
∞∑
k=0

[
(N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/2N

]p (
1+ (k + 1)1/2N−1/q

)p
2−k

�
[
(N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/2N

]p
,

which completes the upper estimate of�(a)N
(
MWr

2(T
d), �, Lq(Td)

)
p
.

Now we proceed to the lower estimate of Theorem 2, in this case, it is enough to study
the case 1< q�2. By virtue of Theorem 1, there exists a constantc such that

�N,1/2
(
MWr

2(T
d), �, Lq(Td)

)
> c

(
N−1 ln�−1N

)r1+(�−1)/2
(ln(�−1)/2N)

(
1+ (1/N) ln1/22

)
. (36)

Next we prove that for any linear operatorT of MWr
2(T

d) with dimT �N , there exists a
subsetG ⊂ MWr

2(T
d) with measure�(G)�1/2 such that

‖x − T x‖Ldq > c(N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)(1+ (1/N) ln1/22),
∀ x ∈ G. (37)

In fact, let

G′ = {x ∈ MWr
2(T

d) :
‖x − T x‖Ldq > c(N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)(1+ (1/N) ln1/22),
∀ x ∈ G}.

Then�(G′)�1/2. Otherwise, if�(G′) < 1/2, then by the definition of linear(N, �)-width,
we have

�N,1/2
(
MWr

2(T
d), �, Lq(Td)

)
� sup
x∈MWr2 (Td )\G′

‖x − T x‖Ldq
�c(N−1 ln�−1N)r1+(�−1)/2 (ln(�−1)/2N)(1+ (1/N) ln1/22). (38)
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Compare (36) with (38), we have obtained a contradiction. Hence�(G′)�1/2. LetG = G′.
ThenG satisfies (37), which implies,∫

MWr2 (T
d )

(
‖x − T x‖Ldq

)p
�(dx)

�
∫
G

(
‖x − T x‖Ldq

)p
�(dx)

�
[
(N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/2N

]p
(1+ (1/N) ln1/22)p�(G)

�
[
(N−1 ln�−1N)r1+(�−1)/2 ln(�−1)/2N

]p
.

which is the required lower estimate of Theorem 2. Theorem 2 is proved.�
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