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Abstract

We determine the asymptotic values on the linear probabiliati®)-widths and lineap-average
N-widths of the space of multivariate functions with bounded mixed deriva\ﬁ\wg(Td), r=

(re, ... 19, 1Y2<ri=---=r,<r41< --- <rq, equipped with a Gaussian measpiie L, (Td).
That is, the following asymptotic equivalences hold:

1) f1<g<2,then

i (MWD, 1, Lg(Th) =< (V==L Nyt e=D/2 (1n0=D/2 v )
x 1+ (I/N)In(1/5).

(2) If1<g < oo, then
IO (MWSTD, 1 Le(Th) = (V=L Nyt =22 (In0=D/72 ),

Here 0< 0<1/2,ando > 1 depends only on the eigenvalues of the correlation operator of the measure
1 (see (4)).
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If the dimension/ > 2, then the asymptotic exact order of probabilistic linear width’mWE(Td)
with the Gaussian measurein the Lq(Td) space for the cases= 1, 2< ¢ < oo; and the average
linear widthszlg\‘ﬁ) (MWE(TId), 1, Lq(Td)) for the caseg = 1 andg = oo are still open.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let W be a bounded subset of a normed linear spaeéth norm || - ||, and Fy be a
N-dimensional subspace ¥f If Wis a bounded set of, the quantity

e(W, Fy, X) := sup e(x, Fy, X),
xeW

where

e(x, Fy,X) = inf e(x,y,X) = inf [x —y|
yeFN yeFN

is called the deviation dfV from Fy. It shows how well the “worst” elements ®¥ can
be approximated by, however, another choice &f, might provide a smaller deviation.
Thus, we shall consider the possibility of allowing tNedimensional subspaces to very
within X. This idea, introduced by Kolmogor¢%0], is now referred to as thid-width, in
the sense of Kolmogorov, or as thewidth of Win X, which is given by

dy(W, X) = ipf e(W, Fy, X) =inf sup inf |lx — y], D)
N

FN xeWw yEFN

whereFy runs through all possible linear subspaceX of dimension at mos\.
LetT be a linear operator frotd to X, and denote by

AW, T, X) = supllx — Tx||
xeW

as the linear distance of imagd&Vfrom the seW. The lineaiN-width of the seWin Xis
defined by

INW, X) = i?f AW, Ty, X),
N

whereTy runs over all linear operator frox to X with rank at mosi.

Assume thatV contains a Borel field consisting of open subsets\fand is equipped
with a probability measurg defined or5. That is,u is ag-additive nonnegative function on
B, andu(W) = 1. Letd € [0, 1) be an arbitrary number. The corresponding probabilistic
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Kolmogorov (N, d)-width and probabilistic lineafN, 6)-width of a seW with a measure
win the spaceX are, respectively, defined, by

dy s(W, u, X) = igf dn(W\Gs, X),
)

s (Ws gt X) = inf Zn (W\Gi, X), @)
0

whereG runs through all possible subsetsBnwith measureu(G;) <. Thep-average
KolmogorovN-width andp-average lineaN-width are defined by

1/p
A& W, 1, X), = inf </W e(x, Fy)P d,u(x)) .,  0<p<oo,
N

1/p
LW, 1, X)) = inf ( fW lr — Tl du(X)> , O<p<oo 3

The classicaN-width of the class of functions characterizes the optimal error of the
hardest elements in the worst case setting. In the probabilistic approach, the error is defined
by the worst case performance on a subset of measure at least 40 the probabilistic
width can be understood as thalistribution of the approximation on all subset¥éivhich
reflects the intrinsic structure of the class. Therefore, probabilistic case setting, compared
with the worst case setting, allows one to give deeper analysis of the smoothness and
approximation for the function class.

We see in the average case approach that the error is defined by the integral with respect
to a given probability measure. Here the approximation emphasizes not the elements
which attain the supremum and may be very small in measure, but the elements on which
the given measure is most concentrated. So the average width characterizes the optimal
approximation of the “most” elements of classed\bgimensional subspaces.

Detailed information about the usual widths, such as the Kolmogorov widths, Gel'fand
widths and linear widths, may be found in the books [22,26]. Quantities similar to (3)
were considered if27]. The study of probabilistic and average widths has been suggested
only recently (see e.¢18,19,27,28]) and relatively few results have been obtained. More-
over, the majority of the results obtained so far are for univariate classes of functions
(d = 1) (see, e.g9.[3,4,7,14-17,23]). These include results on probabilistic and average
Kolmogorov and linear widths of one dimensional Sobolev classes of functions I, the
norm, 1< ¢ <oo. Papageorgiou and Wasilkowsg0], Wozniakowski[29], Paskov{21],
Hickernell and WozniakowsKB], Kithn and Lindg11] have investigated the problems of
integration and approximation of functions that depend eariables. In the monographs of
Traub et al[27], Ritter[24], some other different problems, which have closely related with
probabilistic width and average width, suchsasomplexity and the minimal error of the
problems of function approximation and integration by usihgtandard information, and
the problem of approximation solution of integral and differential equations, were investi-
gated in the worst, average, probabilistic case setting, and randomized setting. Furthermore,
Ritter[24] provided the most recent and very detailed survey of average case setting results.

Denote bqu(TTd), 1< g < o0, the classicaf-integral Lebesgue space of-periodic
functions with the usual norif ||Lg = |- ||anrd). Lety = (y1,...,ya),t = (t1,...,13) €
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R?, s € R. Thenwe writdy|* = |[y1]* ... [yal*, y+5 = (y1+5, ..., ya+5), y > s Which
means thap; > s, j =1,....d, and(y. 1) = >9_; yjt;.

Consider the Hilbert spacey(T¢) consisting of all Z-periodic functions defined on
thed-dimensional toru§“ := [0, 2n)¢ (T := T*1) with the Fourier series

x(t)=Y cexplitk.0) = Y crex(t). ex(t) = expli(k, 1))

kez4 kez¢

and inner product

(x, y)

1 N
= G /Td x(Oy®)yde,  (x,y e La(TY)).

For arbitrary vector = (r1,...,rg) € R?, we define theth-order derivative ok in the
sense of Weyl by

% ) :=(D"x)1) = Z (ik) c exp(i(k, 1)),
kez?

wherek = (k1, ..., kqg) € Z¢, and(ik)" = ]_[?:1 [k ;|7 exp((mi /2)sgnr ;).
We study the multivariate Sobolev space with mixed derivalwwg(Td), r=(01,...,
ra) € R4, which consists of all functions e Lo(T) satisfying the additional condition

2n
/ x(dt; =0,  j=1.....d,
0

which means that, = 0, if k = (k1, ..., kg), andkikz ... ks = 0. The space W (T¢)
is a Hilbert space with the inner product

e,y = (x,y0)
and the norm|x||§4 W Ty = (x® x™y_ 1tis well known that ifr > max{0,1/2— 1/4},
2

then the spacng(Td) can be embedded continuously into ﬂt@(Td), 1<g < o0.
We equipM W5 (T4) with a Gaussian measurewhose mean is zero and whose corre-
lation operatolC,, has eigenfunctions.e= exp(i (k, -)) and eigenvalues

A = k7P, p>1 4)
that is

Cuex = Jrex, vk € 74,
where

Zg’:{k:(kl,...,kd)ezd:ki#O,izl,...,d}.

Let y1,..., y, be any orthogonal system of functions in(T%), g; = (Cuyj, yjh
j =1,...,n, andB be an arbitrary Borel subset &". Then the Gaussian measyren
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the cylindrical subsets in the spaMEWzr(Td)
G = {x e MW : ((x, 5 ) oo (00 € B}
is given by
n 2

_ " u
G) = [ @nos; 1/Z/ex - ) duy - duy,.
wG) = [[@ra)) . pl-> 20, ug---du

j=1 j=1

More detailed information about the Gaussian measure in Banach space is contained in the
books of Kuo[12], Ledoux and Talagrand 3].

Here and later on we use the following notations: Assumedhat i = 0,1, ..., are
positive constants depending only on the parameter® andd. For two positive functions
u(y) andv(y), y € B, we writeu(y) < v(y) oru(y) < v(y) if there exist constants and
¢ orcsuch thaty <u(y)/v(y)<c2oru(y)<cv(y),y € B.

Now we are in position to state our main results.

Theorem 1. Letr = (r1,...,79), /2 <r1 = =ry, <rpp1< - <rg, L < g < 00,
p > 1,ando € (0, 1/2]. Then the Probabilistic linear widths (WZ’(T“) with the Gaussian
measureu in the spacel, (T9) satisfy asymptotics

(@) If1 < ¢g<2,then

v o (MWETD, 1, Ly(T9)

= (N~tIn'—1 yyri+e-D/2 (ln(H)/2 N) Y1+ A/N)In@/s).

(b) If 2<g < oo, then
(N~LIn'=1 §yrito=1/2 (ln“‘*lW N) (1 + N*l/‘f,/ln(l/é))
< s (MW(TY), . Ly(Th)
& (N~Ln=1 yyri+e=1)/2 (In("‘l)/z N) (1 n N‘l/"\/ln(l/é)) .

Remark 1. The order of upper bound in the part (b) of Theorem 1 is different from the
lower bound only by a power ItV. We conjecture that the order of upper bound is exact.

Following the method of Maiorof14] and using Theorem 1, we obtain:

Theorem 2. Letr = (r1,...,79), /2 <r1 = =r, <rpp1< - <rg, L < g < 00,
0 < p < o0 andp > 1. Then the average linear N-width of the speMéVz’(T") in the
L,,(Td) norm has the asymptotic value

2 (MW T, 1 Ly(T) = (N Hn' = Ny 0D/ (In0=D/2 v ).

Remark 2. (a) LetBMWZV(TTd) be the unit ball of the multivariate Sobolev space with
mixed derivative. The first result on exact order of the classical Kolmoghraidth of



82 C. Guanggui, F. Gensun / Journal of Approximation Theory 132 (2005) 77—-96

BMW) (T4 in the spaceLq(T"), g = 2 was obtained by Babenk], and then the other
cases of 1< ¢ < 2, and 2< ¢ < oo were investigated by Gale¢s,6], Temlyakov (see,
e.g,[26] for more details). In particular, we have the asymptotic expressions

dy (BMWS(TY), Ly(Th) < (N =N)™, 1<g <o,

(12— (5)
Ay (BMWZ’(Td), Lq(Td)) = (NLn=2 Ny YO g g <o,
wherer;, j =1,...,d,areordered suchthat 1R2r1 = --- =ry, <ryp1< -+ <rg.

(b) It follows from (5), the classical Kolmogorov and linddswidths are equal modulo
multiplicative constants foBMWZK(TT") in the spaceLq(TTd), 1 < ¢ <2; however, for

g > 2dy (MW§(W), Lq(Td)) is essentially less than the linear width (MWZ’(W),

Lq(Td)). The linear operators lose to optimal nonlinear operators by a fAct6r1/4.

In [2], we have proved that under the condition of Theorem 1, the average Kolmogorov
N-widths of M W, (T4) with the Gaussian measuytén the spacd., (T¢) satisfy asymptotic
relation

4o (ng(wrd), i, Lq(w’)) = (N~LIn'=1 Ny iHe=D72 (1n0=/2 py. (6)

Comparing this with Theorem 2, it is interesting to note that in the average case setting, the
KolmogorovN-width and lineaN-width of M W5 (T%) in the L, (T%) space, 1< ¢ < oo,

have the same error order. This means that for most functions in cla]slwgf(Td), the
optimal linear operators are (modulo a constant) as good as nonlinear operators.

Remark 3. (a) In the case of one dimensian= 1, 1< ¢ < oo, Theorems 1 and 2 were
proved by Maioro\15], and Fang and YE8,4].

(b) Ifthe dimensiorl > 2, then the asymptotic exact order of Probabilistic linear widths of
w3 (T%) with the Gaussian measuyuen the L, (T% space for the casegs= 1, 2 < g < oo;

and the average linear width¥’ (MWzr(TTd), n Lq(TFd)) for the casgy = 1 andg = oo
are still open.

The organization of the paper is as follows. In Section 2, we establish two discretiza-
tion theorems, which will be used to show the upper and lower estimates of Theorem 1,
respectively. In Section 3, we give the proof of Theorems 1 and 2.

2. Discretization

In order to prove Theorem 1, we use the discretization method[gs&4]), which is
based on the reduction of the calculation of the probabilistic linear widths of a given class
to the computation of widths of finite-dimensional set equipped with the standard Gaussian
measure. First, we recall the definitions and cite some results on the (iMeay-widths
of finite-dimensional set, which play an important roles in the proof of Theorem ¥/} et
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bem-dimensional normed space of vectors: (x1...x,) € R”, with a norm

m 1/p
Y olilr) L 1<p < oo,
Ixllen =1\

max |x;|, = 0Q.
1<i§m| il P

Consider inR™ the standard Gaussian measute v,,, which is defined as

v(G) = (271)_’”/2/ exp(—%llel%) dx,
G

whereG is any Borel subset if®". Obviously,n(R") = 1.
LetN =0,1,...,andd € [0, 1) be arbitrary. We define linea, 6)-width of the space
R™ equipped with the standard Gaussian measime/; -norm:

n s (R™, v, ZZ’) =infinf sup |x— Tnxllep,
Gs TN xeR™\G;

whereTy runs over all linear operator froxxto X with rank at mosiN.
The following two lemmas will be used in the proof of Theorem 1.

Lemma 1 (Maiorov[15]). If 1<g<2,m>2N ando € (0, 1/2], then
Ano(R™ v, 000y =< mM7 +/In(1/6).
Lemma 2 (Gensun and Peixif8]). If 1<g<2,m>2N andoé € (0, 1/2], then

o (R™, v, 00y < mY 1712 /m +In(1/8)

and ifm > N, then

v o(R™ v, 00y < m*472 /m +In(1/5).

We now start to establish the discretization theorem. First, we introduce some notations
and lemmas. It is convenient in many cases to split the Fourier series of a function into the
sum of diadic blocks. We associate every vester (s1, ..., sy) € N? whose coordinates
are natural numbers with the set

Oy ={n=1,....,n0) €Z8: 2557 < ;| < 2%, j=1,...,d)

and letx, (-) denote the “block” of the Fourier series fof-), namely
3sx() = x5 () = Y e ™)
nelly

The next two known lemmas are crucial for establishing discretization theorem (see
Theorems 3 and 4).
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Lemma 3 (GaleeV{5]). LetS be asubset &/, o = (a1, ..., ) € RY, 1< g < oo and
x =) g0sx € F;. Then we have

1/q
|52 (Z ||2<‘“°‘>5sx||‘;;,)

ses

1/q
< X g < |S|2HD (Z ||2<S*“>5sx||§d> : ©)
q

seS

wherea_ = min{0, a}, b = max0, b}, |S| denotes the cardinality of the setegd
Fs = spare’ ™) : n e, s € S}.
Lemma 4 (Galeev{5]). Lets € N?. Then the space of trigonometric polynomials

span{ei(”") ‘ne DS}

is isomorphic to the spadﬁz("‘l) via mapping

x(t) — {xs,m(tj)}m,j’ Xem (1) = Z Cnei(n’[)
nell;
sgnn=sgnm
m=(mi,...,mg) = (£1,...,+1) e RY, 1; = (n2%1jy, ..., 2275 j;) € RY,
ji=1,..., 2 i=1,...d.

Moreover the following relation is true:
el g = 27D e m b s, 1< g <00, ®)
where in the equivalence nor8), the constants do not depend on s.

Now we are ready to establish a discretization theorem which reduces the computation
of the upper bound for probabilistic line&n, 8)-width Ly s(MW5(T%), u, L,(T%)) to
the corresponding finite-dimensional problem for the lingérd)-width Ay (R™, v, ).
Below, we always assume that

y=r+p/2, Y =7/0r1+p/2)
and for natural numbetsand/, let

Sex={s e N 0 —1<(s,y) < £, (s,1) =k}, (9)

d
Sek = {s e N9 Zsi =k, t—1<k) <£},
i=1
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and let|| Sl = D |0 Then we havel S, || = 2¢|S,«|. It is clear, we always have
seSek

k>dandS;x = ¢ if k>¢. Set

Fox = spar{ei(”") tnelly, s €S

Theorem 3. Letl < g < 0o, 7 = (r1,....ry) € R4, 1/2 < rp = -+ =1, <
ryp1<---<rg, N =0,1,...,9 € (0,1/2] and let the sequences of numbéné ;}
and{og x} be such thaO < Ny ¢ < |[|Sekll, Zi,k Nk gN,andZM 0¢x <0.Then

N (ngard), 1, Lq(TTd)>

_ _ — 1 S,
& Y2 a2k g, (A2 g s ([RHS(,kH’ v, €} z.kl\).
£,k

Proof. It follows from Lemma 3 that

1/q
e EHD= D 105117,
SES k
1/q
(1/2-1/q) q
< lxllzg < [Se] . ;nésxn% , (10)
SE k

wherex € F; ;. Note thaty = r + p/2 and(s, 1) = k for s € S; «, then the definition of
osx implies

1/q 1/q
DoUexnl, = | YD 12078x?,
S€Se k 1 SESI k !
1/q
— Z 2(1(S>F+P/2)*Q(S,P/2)||5Sx||zd
SESe k !
1/q
s —qkp)2
— Z 24(s,7)—=qkp/ ”5&)‘”1:4
SESe Kk !
1/q
~ 201+p/2)t 2=akp/2)15 |19
> 195 I
SESy k
1/q

— 201+p/2)t—=kp/2 Z ||5Sx||‘zg

SESL](
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Substituting the above relation in (10), we get

1/q
|Se’k|(1/2—1/q)72—(r1+ﬂ/2)5+kﬂ/2 Z ”avx(r)”‘ig
SES(Vk
1/q
L Ixllpg < S| M HDe2mCrrnHkoZ LN 5 O ]
q 3 q
SES0 k

which together with Eq. (8) in Lemma 4 for tidgx ") implies
1/q

|S€,k|(1/2—1/4)— o= (r1+p/2)t+kp/2 Z 2—(,1) ||{(5sx(r))(tj)}m‘j ”Z

2(s,1)
SES{_k 4

< ||.x||Ld < |Se k|(l/2—1/q)+2—(r1+p/2)£+kp/2
7 s
1/q
< | 20 27OV Ny |- (11)
q

SESy k

Now we consider in the spad@ ; the polynomials

Pym =Y ent—1)),  s€Sus
~ nel)
signn=signm
m=(my,....,mg)=(£1,..., £ eR? ji=1,..., 2" i=1,...d.
Obviously, these polynomials are orthogonaLin(T¢), and for anyx € Fox,
(D" X)sm(t)) = (D'x, on ), Vs, m, j.
Plugging this into (11), and noting thét, 1) = & for anys € S¢ x, we get
S| /2~ gt Dk 2R (D, b ) I psest
< ”x”Lg < |Se’k|(1/2—1/61)+2—(r1+p/2)€+kp/2—k/q
<D x, oo Ms.m.j I psesr- (12)
Now for any?, k € N andd <k <¢, we consider a mapping

[1Se. |l 0,k
Iog: Fop— 4y x> {(D'x, @0, iMsm,j-

It follows from (12) and Lemma 4 thdt  is linear isomorphic from the spadg ; to the

S,
spaced} eel
In the sequel for convenience, we write

c  e— ] - I1Se kI [1Se.kll
’lNz,k,t)/z.k = ANg,k,oH (R A Eq .
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Denote byL, ; alinear operator froni/!S¢+ll to RIS¢xI such that dimL, , < N, and
v i y € RISeal 1y — Leiylen > iNM,(s,,k} <Ok (13)

Foranyx € MW, (T9), let Ag jx = Z osx. Then by virtue of (12) there exists constant

SES[_k

c1 independent of andk such that
[ 4ekx — D_rlgf;clLe,klz,kAe,kx||Lg
<e1lSe x| M2 Y p=ritp/2e+kp/2-k/q

0k ek
x (D", @l Moms = LealdD"x, 058 Moamas | psean (14)
q
Setayy, i 1= (Cu@yn i Pum.;)- TheNitis clear that all of )  are equal and
Ok ol bk i
Oym ;= D NI L@y, 1 e )P

neZ‘é

= Z In| =P = (2D)A=p) = 2=k(p=1)

nelly,

signn=signm

Therefore there exists a constaptsuch that

oc:=cg% = c%Z_k(p_l), Vs, m, j. (15)

s,m,j
Consider the set aff W5 (T%)
Gep={x € MWE(T : | Agpx = D" I i LesArixl g
> c1c9|Se 1| V2 Ve g~ Cr+p/DETk/2k]a )y

From (14), the definitions of the measyreand the standard Gaussian measuie the
spaceR!Se+l and (13),

WGep) < sl € MWHTY) : | Aeix = D7 I L ealex Aekv g
= Gl/zANz,k»fSe,k}

=v {y € RISt jygt/2 — Lz,kyo’l/zllkumu > 61/2/11\/[,,{,5@,,(}
q
=0 {y e RISty — Loyl isest > JVNLk,&gvk} <Ok (16)
q

Let us consider the sét = U G and the linear operatdiy defined fromMWZ’(TFd)
to MW (T4), which is Tyx = ZD_rlgjlg'LgykIg’kAg’kx. From the hypothesis of the
0k

theorem, we get

WG D WG < Y 60k <O

£,k .k
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and
dim Ty < ) " dim Lex <Y Nex<N.
0,k 0,k
Consequently, by the definitions &f, T, {G¢ x} and{L i},
I (MWD, 1 Ly (T)

< sup lx — TNX||L3
xeMW5 (TG

]
< sup Z [dexx — D1, LeslexAekxllpg
xeMW35(TNG ¢k

& Y 2Dk 2k g, A2V gy s (Rusz,ku’ D, ggsz.k”) ,
Lk

which complete the proof of Theorem 3]
To establish the upper bound of Theorem 1, we also need the following lemma.

Lemma 5(Romanyuk25]). LetN € N, N < 2“4"~%, B > 0, S, be defined by9) and

I1Se.ll. d<k<t, t<u,
Nex = LISexl20tPu=2B4br | a<k<e, € > u,
0 others
Then
Y Nek <N, (17)

£,k

where|a| means the largest integer no greater than a.

We suppose that in Lemma 5 the constéint 0 satisfies also the condition
O<f<min{2ri+p—2 1/2 (18)

and will be selected in the course of establishing the required upper bound of Theorem 1.
To proceed the lower estimate of Theorem 1, we prove another discretization theorem,
which reduces the computation of the lower bound for probabilistic lii&aw)-width
to the estimate of the lower bound on finite-dimensional problem for(#e))-width
An(R™, v, €7). Thus in a certain sense, it is a converse of Theorem 3. First we give some
notations.
LetS = Sk, = {s = (51,...,8,1,...,1) € N? : (s,1) = k = [kol]}, wherekg will
be chosen later. It is not difficult to prove thal =< k*~1, that is, there exist two positive
constantss andca such thatzk’ 1< |S| <cak’~1. We chooséq such that the number of
harmonics in the set Bis at least &, i.e.,

ISI =" 10,1 = > 20 = |§12" > k" 12k > ek 1250 = 2N

seS ses
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and

2k < N < |5)2k. (19)
We consider the space of trigonometric polynomials

Fs = sparie' ™" : n e Oy, s € S).

In the proof of (12), if we letS, x = S, and note thats, 1) = k for anys € S, it follows
that there exist two positive constatsandc; such that

— — k,k
C6|S|(l/2 1/11)—2 (rl+l/q)k||{(Dr.x, (Ps’m’]>}g’m’]||zgsl|

< ”x”LZ <C7|S|(1/271/q)+2*(r1+1/q)k”{(Drx, (pf,’;];,j)}f,m,j ”gj]\SH ) (20)

Let
k,k
Is: Fs — EgS”, x> {(D'x, @0, Msm,j-

Then by virtue of Lemma 4 and (2Q)s is a linear isomorphic mapping from the space of

trigonometric polynomialgs to EL',S”.
Now, we are ready to prove the another discretization theorem.

Theorem 4. Suppose that < ¢ < 00,7 = (r1,...,rq) € R, 1/2 <ri = =1, <
rv1< - <rg, N=0,1,...,0 € (0,1/2]. Then it follows that

AN,(S (MWE(—H—d), L, Lq(‘ﬂ'd)) > 2—(r1+1/q+(p—1)/2)k|S|(1/2—l/q),
<IN s (Rnsm b, ggsu),

where the set S is defined (D).

Proof. Let Ty be a linear operator fromd W, (T%) N Fs to MW2(T?) N Fs such that
dimT7y <N and

u {x e MW5(TH N Fs : [lx — Tuxlz, > zN,(;} <0, (1)

whereldy s .= Ay s(MW5(T), p, Ly(T?)). Set
G={y e RIS : 1y — 1D 15yl
> 5 g2t l/ato=1/2k g 1/a-1/2)— ) Nﬁ} ,
wherecs, cg are defined by (15), (20), respectively. Then from (20) and (21), we get
0(G) < vy e RIS |y~ [sTiD 15 yo 2 s

> gtk gA/a-1/2- ) 5}
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= p{x € MWST O Fs 10D, 08 Dooms
ry— r k,k
—ISTD" IS (D x. g7, eam.ll s
> gLk 5|(1/a=1/2- ;VM}

<u {x € MWS(TH) N Fs : llx — Taxll g > J,N,(;] <0, (22)

where the constantis defined by (15). Clearly, dimSTlDrlgl} < N. Therefore, by (12),

AN.® (R”SH, v, K(!S”> < osup |y — ISTlDrI_;lyHeusu
yeR”S”\G q
< 2(r1+1/q+(/)—1)/2)k|S|(1/q—1/2)—;LN 5

That is
Ins ( MW5(TY), p, Lq(Td)) > 2~ (FL/a+(p=1)/2k g (1/2-1/q)-
XAN .6 ([RE“S”, v, zgs“>, (23)

which completes the proof of Theorem 4]

3. Proofs of main results
We are in a position to prove Theorem 1 which is the main result of this paper.

Proof of Theorem 1. We begin with the upper bound. Itis clear that we only need to prove
the upper estimate for the cas&€g < oo. Choose a constant9 f§ < 1/2, and for given

N e N, select au according to the conditiotv =< 2“x'~1, We defineN, x as in Lemma 5,
and let

5o 1 = ONp /N, d<k<{, £ > u,
“= 10 others.

From the definition ob, ; and (17), we get

D bk <0 (24)
I

By virtue of (17) and (24), we know th&dv, } and{J, ,} satisfy the conditions in Theorem
3. By Theorem 3 and Lemma 1, we have

Ins (MW§(Td), 1, Lq(TTd))

_ _ - , S,
< ZZ kP k2K a g, 12 ag, (Rus@,ku’l), ¢ ull)
€.k

3 - - s
<30 2Rk g, V2 s <R”S‘J‘H,U, ) “n)
>u d<k<{l
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<> > 2-“1+f’/2>’f+’</2—"/4|Se,k|1/2—1/q<||5z,k||1/q+,/In<N/<Nz,k5)))

l>ud<k<t

< Z Z 2—(r1+p/2)t+k/2—k/q |S£,k|1/2_1/q||51£,k||1/q
>ud<k<e
T Z Z o—(r1+p/2)t+k/2—k/q ISz,kll/zfl/"N[’,?/le/Z
l>u d<k<t
+ Z Z o—(r1+p/2)e+k/2—k/q |Se’k|1/2—1/q\/m
t>u d<k<e
=Nh+ DL+ I3 (25)
In the course of the proof of the second inequality, we have used a simple fact

ANe o0 (R”Sﬂk”, v, el,'s‘f-’f”) =0, d<k<uork<dorks¢.

Our next aim is to estimate the three terms at the end of expression (25)rSinck/2,
we can choose a constghsuch that the condition & < 1/2 is satisfied. We start with
the termIq,

L= Z Z 2= (r1+p/2)t+k/2—k/q |Sé,k|1/2_1/q|Sl,k|l/q2k/q
l>u d<k<!t

— Z 2—(ri+p/2)t Z 2k/2|Se k|1/2- (26)
>u d<k<t

Now we begin to deal with the inner sum in (26). For this purpose, using an id2&]of
we represent this sum in the form

/ 14
SO 2PIs = >0+ D | 258, (27)
d<k</t d<k<tl d<k<(

/
where the summation inZ is carried out ovek with | Sy x| <¢'~1 and the summation

d<k<t
"

in Z is carried out ovek for which |S¢ ;| > £'~1. We have

d<k<(
/ U
Z 2k/2|Se,k|1/2<€("_1)/2 Z 2k/2 o p(=1)/29t/2 (28)
d<k<! d<k</t
and

4 "

> sl = Y 2RSu 1SexlTH?
d<k<t d<k<t

< ¢~0-D/2 Z 2k/2(5.1) o p=(v=1)/29t/2pv-1
(s,7)<¢t
— 2t/2,(-1)/2. (29)
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Thus, substituting (28) and (29) i27), we obtain

d<k<e
Return to (26). It follows that
I < sz(rlJr(pfl)/Z)ZE(vfl)/Z « 2~ 1+ (p=1)/2u, (=1)/2
L>u
= (N LIn"~1 Nyt =072 (In0—=D/2 (30)
Next we estimate the terif. Using the condition G< § < 1/2, we get

I = Z Z o= (r1+p/Dl+k/2—k/q 1Sex |l/27l/q|SZ,k |71/2
l>ud<k<t
2 t/2=Pu/2+Be—Pk/2 pr1/2
< NY2p—u/2=fu/2 Z 2~ (r1+p/2L+pe Z 2(1/2—/}/2—l/q)k|Sl’kl—l/q
>u d<k<t
< NY2p—u/2=fu/2 Z o~ (r1+p/2L+pe Z 2(1/2-p/2)k
O>u d<k<(
< NY2p=u/2=pus2 Z o—(ri+p/2-1/2-f/2)¢

>u
< N1/22—14/2—[)’14/22—(r1+p/2—1/2—[}/2)u
= NY20=(+(p=1)/Quop—u/2 _ | (v=1)/20u/20—(r1+(p=1)/Duo—u/2

— u/29=(r1+(p=1)/2u, (v=1)/2 _ (N—l In'—1 N)r1+(pfl)/2 (|n("*1)/2 N). (31)

Finally, we proceed the termy. Using the condition O< f < 2r1 + p — 2 (see (18)), we
derive

I3 = Z Z 2*(V1+P/2)5+k/2*k/q|S£’k|1/2*1/11 In(1/5)

>ud<k<t

< 22—(r1+/’/2)4 Z 2(1/2_1/q)k|58,k|1/2_1/q /In(1/9). (32)

L>u d<k<t
Using the method of computing, we get
3 2k, 1121 o 2021/ tgl/2-1g,
d<k<t

Substituting above inequality in (32), we have

1/2-1/
I3 < 22—(r1+(ﬂ—1)/2+1/q)@ (gv—1> 1 /In(1/5)

{>u

« 2 e/ 0072 (1) i)
= (N~In=1 Nyt =072 (1n0=72 yy N4, /In(1/5). (33)
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Substituting (30), (34) and (33) i”%), we have
/lN‘é (Wé‘(‘l]'d)’ ,U, Lq (ﬂ'd)) << (N—l |nv—1 N)r1+(l7_1)/2 (In(V—l)/Z N)
x (1 + N—l/q,/m(l/(s)) : (34)

which completes the upper estimate of Theorem 1.

Now we proceed to estimate the lower bound. We begin to prove the left inequality of
the part (b) of Theorem 1. LetRq < oo. It follows from Theorem 4, Lemma 1 and note
that|S| < k"1, we have

N (ng(wrd), 1, Lq("ﬂ'd))
> 2= atla+o=D/2k; | o (Rnsu, v, g‘!sn>
> 27 DK (S| Y9 + In(1/0))

> 2—(r1+(p—1)/2+1/q)k|S|1/q2k/q + 2—(r1+(,0—1)/2+1/‘1)k /In(l/é)

> 2—(1*1+(p—1)/2)kk(v—1)/q + 2—(r1+(p—l)/2)kk(v—l)/qk—(v—l)/qz—k/q /ln(l/é)
= (N—l In’—1 N)r1+(l)—1)/2 Inv=b/a n + (N_l In'—1 N)r1+(/’—1)/2

x(Inv=Y/a yyn—1/a,/(n1/9)
= (N LIn"=1 Nyt =072 in0=b/a yy + N~19,/In(1/6)).

We turn to establish the lower estimate for the case 4 <2. In this case, the lower
bound of Theorem 1 can be obtained directly from our p&ebut for convenience to the
reader, we give the proof in details. By Theorem 4, and Lemma 2, we have

I s (MWETD, 1 Ly(Th)
> 2~ 1+ (p=1/Dk g |1/2-1/a ) (Rusn, D, gl]\”)
> 2 (e DIAR L2 s Va2 /S 4 In(1/0)
s> 2 HO=D/k | §1/2 | o=(r1H(p=D)/2+1/2k fin(1/5)

rov-1/2
—(r1+(p—1)/2k;,(v—=1)/2 —(r1+(p-1/2k _*
> 27" k +2'1 2k/2k(v—1)/2‘/|n(1/5)

- (Nfl Inv—1 N)r1+(pfl)/2 InO-1/2 5
1
+(N"Ln' =t yyrre=D/2 (In(V_l)/zN)ﬁ‘/ (In1/5)

< (N~ Hn'= Lt Nyt =072 in0=D72 Ny /1 + 1/N In(1/9),

which is the required lower estimate of part (a) of Theorem 1. The proof of Theorem 1 is
completed. O

Proof of Theorem 2. First, we estimate the upper bounds. In this case, we only need to
consider the case ofRq < oo. It follows from the proof of Theorem 1 tha[tq(WId) has
a linear operatolr with dim 7 < N such that for any € (0, 1/2] and some subséts C
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MW} T4y with (G ) <4,
A(M W5 (T\Gs. T, Lmd)) < (N7Hn= Nyt 0= D/2 (n0=D/2 )

x (1 + Nfl/‘fw/ln(l/é)) . (35)

Considerthe sequenf6,-« };° , of sets, wheré; = MW§(WId) fork = 0. Thenitfollows
from estimate (35) that

/ A (x, T, Lqﬂrd))p 1(dx)
MW5 (T4

o0

= Z/ Ax, T, Ly (TP p(dx)
k=0Y Gk \Gyi—1

<> (MWZ’(W)\GTM T, Lq('ﬂ'd)>p W(Gor)
k=0

oo
< Z [(N—lmV—l N)THP=D/2 |n(r=1)/2 N]p <1+ k + 1)1/2N—1/q)1’ o~k
k=0

— - _ P
< I:(Nfllnx 1 Nyt =172 |n0v 1)/2N] ’

which completes the upper estimatei(ff (MWQ(Td), 1, Lq(Td)> :
P

Now we proceed to the lower estimate of Theorem 2, in this case, it is enough to study
the case k ¢ <2. By virtue of Theorem 1, there exists a constastich that

vz (MWET, 1 Ly (T)
> e (v =tn) T 002 ) (14 @/myint/22). (36)
Next we prove that for any linear operafbof MWE(T”’) with dimT < N, there exists a
subsetG ¢ MW (T%) with measure:(G) >1/2 such that
e = Txll g > c(N~HIN=E Ny 1HOD2 D2 Ny (14 (1/N) In22),
VxeG. (37)
In fact, let
G ={x e MW, (T?:
e = Txll g > c(V~HIN=E Ny HED2 (InCTD2 Ny (14 (1/N) Int22),
Vx e G}
Thenu(G’) >1/2. Otherwise, iit(G') < 1/2, then by the definition of linedV, §)-width,
we have
in a2 (MW T, Ly (T4)

< sup lx = Txl g
xeMWj(TH\G’

<c(N"HIn=t Nyt =072 (In0=D72 Ny(1 + (1/N) InY/? 2). (38)
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Compare (36) with (38), we have obtained a contradiction. HenGé > 1/2. LetG = G'.
ThenG satisfies (37), which implies,

14
f (I = Txlg ) )
MW (T !

14
> [ (1= 7xtig)” nian
G q
> [(N—1 In'=1 N)1+(P=1/2 |p(=1)/2 N]p (14 (1/N)InY22)P u(G)
> [(Nfllnv—l Ny 1HE=D/2 |p(=1)/2 N]” .

which is the required lower estimate of Theorem 2. Theorem 2 is proved.
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